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FOREWORD

The Operations Research Center at the Massachusetts Institute of

Technology is an interdepartmental activity devoted to graduate education

and research in the field of operations research. The work of the Center

is supported, in part, by government contracts and industrial grants-in-aid.

The work reported herein was supported (in part) by the Office of Naval

Research under Contract N00014-75-C-0556.

John D.C. Little
Director

ABSTRACT

An essential element of the newspaper logistics system is the alloca-

tion and routing of vehicles for the purpose of delivering newspapers on

a daily basis. In this paper, we present various vehicle routing problems.

Formulations defining the mathematical models are discussed in conjunction

with several widely-used heuristic solution techniques. The focus is on

providing a unified framework for these very difficult combinatorial pro-

gramming problems.
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I. FORMUI.A'IONS

Introduction

Logistics is concerned with the effective management of the total flow

of goods, from the acquisition of raw materials to the delivery of finished

products to the final customer. An essential element of the newspaper

logistics system is the allocation and routing of vehicles for the purpose

of delivering newspapers on a daily basis. In this report, we present

various vehicle routing problems. Formulations defining the mathematical

models are discussed in conjunction with several widely-used heuristic

solution techniques. The intention is to complement the survey paper by

Gabbay [12] which presented an overview of vehicle routing problems by

focusing upon node-routing and branch-routing components. In addition,

while these difficult combinatorial problems are frequently discussed

verbally in the literature, precise mathematical formulations are not

readily available (Pierce [29] gives formulations in his special survey

paper which are neither linear nor integer programs). We hope to correct

this situation.

Typically, the newspaper vehicle routing problem is of the node-

routing variety. Vehicle routing problems, sometimes referred to as truck-

dispatching problems, are almost always encountered by complex organizations,

and reliable procedures for dealing with them are of primary importance.

This is especially true in the newspaper industry where yesterday's product

is worthless today. Recently, in response to higher vehicle costs due to

increased oil prices and rising truck drivers' salaries, these issues have

been receiving more and more attention.

4 .
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There may be several hundred delivery points in and around a city, each

with specific demands (in quantity of newspapers). In addition, there may

be delivery deadlines or earliest delivery time constraints. The fleet of

trucks may contain different Lypes of trucks with different capacities. There

may be several afternoon editions of a newspaper. In the future, it is con-

ceivable that each edition may have several distinguishable products. That

is, each edition may well represent a-multi-product newspaper. There may

be a common base of news coverage in all the newspapers of a particular

edition, but one product ma> emphasize sports, another finance, another

international news, another leisure and the arts, and so on. Several news-

papers with widespreid distribution already are publishing regional issues

to distinguish customers by geography.

The objectives involve minimizing the number of vehicles required in

the fleet., minimizing travel time by vehicles, increasing circulation, and

generally providing efficient service in order to deliver newspapers from

:he press to the streets and ultimately to the people of a community as

quickly and cost-effectively as possible. All vehicles depart from the

central depot, make a tour of a subset of the demand nodes, and return to

the central depot. We have been referring to the specific newspaper vehicle

routing problem. However, it should be clear that all vehicle routing pro-

blems are more or less the same. As an illustration we mention the appli-

cation of vehicle routing techniques to municipal waste collection by

Beltrami and Bodin [5], where instead of making a delivery we perform a

pickup at each collection point. Another such example is the routing of

school buses. Operationally the problems may seem different, but theoretically

they can be thought of as equivalent.
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Proposed techniques for solving problems of this sort have fallen into

two clahses - those which solve the problem optimally by branch and bound

techniques [11], [29], and those which solve the problem heuristically [91,

[10], [141, [16], [18], [24], [30], [34], [35], [38]. In a loose sense,

heuristic algorithms represent sets of rules which produce good solutions to

given combinatorial programming problems, but not necessarily the best

possible (opt'mal) solutions. Since the optimal algorithms are viable only

for very small problems, we prefer to concentrate in this paper on the study

of several heuristic algorithms.

The Traveling Salesman Problem

In this section we discuss the ubiquitous Traveling Salesman Probl.em;

for a very thorough overview see Bellmore and Nemhauser [4]. Suppose we

are given the matrix of pairwise costs or distances cij between node i

and node j for the n nodes 1,2,..., n. We assume cii = for i = 1,2,..., n.

The problem is to form a tour of the n nodes beginning and ending at node 1

(which we refer to as the origin) in such a fashion that the minimum total

cost or distance tour results. We present the integer programming formu-

lation below.

n n
minimize E 9 c..x.. (1.1)

i=l j=l 13 13

n
subject to x = 1, .,j n (1.2)~~i=l ij ..

n
x i , i , n (1.3)
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x j > 1, every Q C V, Q # 0 (1.4)~~iCQ j cQ x i j -

x1j i'j 1 ... , . (1.5)

where n = the number of nodes in the network

V = the set of nodes

x ij = 1 if arc (ij) is in the tour

0 otherwise

c.o = the cost on arc (i,j)

Q = a subset of the nodes

Q = V - Q.

Note that there are - 2 subtour constraints. The Traveling Salesman

Problem has probably received more attention than any other problem in

the Operations Research literature.

Equation (1.1) states that we minimize total cost. Equations (1.2)

and (1.3) represent the fact that there must be one arc into and out of

every node. Equations (1.4) are the subtour-breaking constraints. Alterna-

tive, and rather ingenious subtour-breaking constraints were proposed by

Miller, Tucker, and Zemlin [27]. If we replace (1.4) by y. - y. + nx..

< n - 1, for 2 < i j j < n where the variables yi are arbitrary real

numbers, we reduce the number of constraints from 2n -2 to n - 3n + 2.

The simplest vehicle routing problem occurs when the capacity of a

vehicle exceeds the total quantity demanded at the n nodes and there are

no time constraints, in which case we have a Traveling Salesman Problem.

For optimal and vry powerful heuristic approaches to the Traveling Salesman
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Problem see Hleld and Karp f191, [20], Lin [25], Lin and Kernighan [25], and

Christofides and Eilon [7].

The Multiple Traveling Salesmen Problem

The 'Multiple Traveling Salesmen Problem (MTSP) is a generalization of

the Traveling Salesman Problem (TSP) and comes closer to accomodating more

real-world problems; here there is a need to account for more than one

salesman. Multiple Traveling Salesmen Problems arise in many sorts of

scheduling and sequencing applications. For example, the framework could

be used to develop the basic route structure for a pickup or delivery service

(perhaps a school bus or rural bus service); it has proved to be an appro-

priate model for the problem of bank messenger scheduling, where a crew of

messengers picks up deposits at branch banks and returns them to the central

office for processing [32].

Giv2n m salesmen and n nodes in a network the MTSP is to find m sub-

tours (each of which includes the origin) such that every node (except origin)

is visited exactly once by exactly one salesman, so that the total distance

traveled by all m salesmen is minimum. A MTSP formulation is displayed below.

n n
minimize E E c. .x.. (2.1)i=l j=l 33

n

subject to E xi = b (2.2)i=1 J if j = 2,3,..., n

n m ifj =1

Z x. = a (2.3)
j=l 3 if i = 2,3,..., n
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x.. > 1, every QC V, Q # 0 (2.4)
iE:Q jQ "

x = 0,, i,j = 1,..., n (2.5)

Svestka and Huckfeldt present constraints for the MTSP which resemble

the Miller-Tucker-Zemlin formulation of the TSP [32], and apply a subtour

elimination type branch and bound procedure using Bellmore and Malone branch-

ing to obtain the optimal solution; mean run time for 55 city problems is

one minute. Three different papers published in 1973 and 1974 independently

derived equivalent TSP formulations of the MTSP [31, [28], [32]. We describe

this now w' h the motivation that the m-salesmen problem is no more difficult

to solve than its one-salesman counterpart.

In equations (1.2) and (1.3) we notice assignment problem constraints.

Equations (2.2) and (2.3) typify more general transportation constraints

(a transportation problem with right-hand-side values of unity becomes an

assignment problem if the number of supply nodes and demand nodes is the

same). An approach for solving the ISP and the MTSP is to first solve the

asso( ated assignment problem or transportation problem. If, as a result,

the appropriate equations (1.4) or (2.4) are satisfied, terminate. Otherwise,

a- subset of -the violated constraints are implicitly introduced into the

problem.

If we decompose node 1 (the origin) into nodes 1,2,..., m representing

the origins for the m ialesmen, we now have an expanded network of m+n-l nodes

with the augmented cost matrix displayed below.
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1 2... m-lm

2 infinity Copy of row 1

m

copy of

column , Original Cost Matrix

C

4N

Figure I. Augmented Cost Matrix CN.

We have transformed the original MTSP to the following integer programming

problem:

m+n-l m+n-1
minimize C c.. x.. (3.1)

i=l j=l 13 1

mn+n-i
subject to Y:.. i , j = 1,..., m+n-l (3.2)

m+n-i
E x = 1, i 1,..., m+n-I (3.3)

j=l

N
x.. >1, every QC VN , Q # 0 (3.4)

iEQ jiQ -

x.. 0,1, i,j 1,..., m+n-i (3.5):LJ

.5
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wyhere the coefficients and variables refer to the expanded network; VN is

the set of nodes in the expanded network. Thus, we have shown that the MTSP

can be solved by solving the standard TSP on an expanded network where the

number of nodes is !creased by m-l; m is the number of salesmen available.

Foi' example, consider a four-city problem with two salesmen. Originally

we have nodes 1,2,3, and ! with node 1 as the origin or home base. Our ex-

panded network is comprised of nodes 1,2,3,4, and '5 where nodes 1 and 2 stand

for the home city and nodes 3,4, and 5 correspond to the original cities 2,3,,

and 4 respectively. In Figure II, we see that tour 13245 in the expanded

network is equivalent in the two-salesmen interpretation to &abtours 12 and

134.

2I 0

e2

Figure II. A sample tour for a four-city two-salesmen problem in expanded

and original network.

We notice that c = for i E {1,2,..., m) and j E {1,2,..., m} in the

augmented cost matrix; this insures that exactly m tours will be formed.

There is potential benefit from treating cij = X for i # j and i,j F {1,2,..., mL,

in other words by treating these costs as being equal to a parameter X which

we can vary. For iiistance, if we set A - then the TSP on the extended

network will yield the minimum cost set of tours with a minimum number of

tours since there is a premium placed on returning to the central depot



-9-

directly from the central depot. As a consequence, we minimize the number

of vehicles required, albeit at the expense of total travel time. If on the

other hand X = 0, then we minimize total travel time subject to the constraint

that there are at most m tours. In any real-world application it might be

desirable to solve this converted TSP for a range of values for the para-

meter X and select the most attractive routing strategy from among these can-

didates. This bridge between the two objectives of minimizing total travel

time and minimizing the number of tours required was suggested recently by

Christofides in his excellent survey [8].

If distance measures on the arcs satisfy the triangle inequality, then

for A < 0 the optimal strategy will entail only one tour. In any case, for

A = - , only one tour will result.

The Truck Dispatching Problem

The truck dispatching problem was first considered by Dantzig and

Ramser [10] who developed a heuristic approach using linear programming ideas

and aggregation of nodes. The problem is to obtain a set of delivery routes

from a central depot to the various demand points each of which has known

requirements, which minimizes the total distance covered by the entire fleet.

Trucks have capacities and maximum route time constraints. All trucks start

and finish at the central depot. We will formulate this now and refer to

it as the generic vehicle routing p:oolem. As for as the author knows, com-

plete and accurate linear-integer programming formulations for this subset

of combinatorial programming problems do not exist in the literature.
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NN NN NVminimize z= E Z Z t j ijk  (4.1)
i=i j=1 k=1

NN NV
subject to Z Z Iik NN (4.2)

i=l k=1

NN NV

Z Z Z ijk i 2,..., NN (4.3)j=l k=l

NN NN

k ipk - j Z 1 = 0, k = 1, NV (4.4)

P 1,..., NN

NN NN

Pk- E{Q i Z Z ijk > 0, k = NV (4.5)i l j-1 3 - '

NN NN NN NNTk - ti j I ijk + 1 ijt£.k > 0, k 1 ,NVi j~l 3 i~l j=l 3z -''
(4.6)

NNj k2 <1, k W&1,. NV (4.7)
j=2 j-

NN
Z k ilk < , k = ,..., NV (4.8)
i=2

NV
ui - u. + NN E 2ij. < NN - < i j < MN (4.9)

Sk=! k - _i _(.

ijk C (0,1) for all i,j,k (4.10)

where NN = # of nodes

NV = # of vehicles

ui = arbitrary real numbers which satisfy constraints (4.9)

Pk = capacity of vehicle k

Tk = maximum time allowed for route of vehicle k

4k



Qi = demand at node i (QI = 0)

ti = time required to deliver or collect at node i (tI = 0)

tij. = travel time form node i to node j (tii = c)

1 if arc (ij) is traversed by truck k
Zijk =

t0 otherwise.

Equation (4.1) states that total travel time is to be minimized.

Equations (4.2) and (4.3) insure that each demand node is served by some

truck and only one truck. Route continuity is represented by equations

(4.4), i.e., if a truck enters a demand node, it must exit from that node.

Equations (4.5) are the truck capacity contraints; similarly, equations (4.6)

are the total elapsed route time constraints. For instance, a newspaper

delivery truck may be restricted from spending more than one hour on a tour

in order that the maximum time interval from press to street be made as short

as possible. Equations (4.7) and (4.8) make certain that truck availability

is not exceeded. Finally, the subtour-breaking constraints (4.9) here are

of the Miller-Tucker-Zemlin variety. Since (4.2) and (4.4) imply (4.3), and

(4.4) and (4.7) imply (4.8), from now on we consider the generic model to

5include (4.1) - (4.10) excluding (4.3) and (4.8), which are redundant. We

assume that max Q. < min P That is, the demand at each node does
l<i<NN I<k<NN

not exceed the capacity of any truck.

In our generic model we make the additional assumption that when a

demand node is serviced, its requirements are satisfied. In other words, one

visit is sufficient. A mixed integer programming heterogeneous fleet pro-

blem formulation was given in 1957 by Garvin [13] in which this assumption

"-4
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is relaxed. This is the earliest paper in the literature concerned with

vehicle routing problems as discussed here, and deals with an application in

the oil industry. It does not, however, provide for maximum route time

constraints. In addition, the numbs: of variables is much greater than in

the previous model. We present Garvin's formulation below.

minimize Z. cijsxijs (5.1)
i,js

subject to x.. = E x. for all j,s (5.2)
u

k ijk < Z w s x ijs for all i,j, i # j (5.3)
k s J

Z Yijk =  juk for all j,k, j # k (5.4)
i u

Z Y = V for all k (5.5)
ikk k

Z Ylk = Z Vk (5.6)
k,j k

x.. S {0,i,2,... } (5.7)
3.3

Yijk > 0 (5.8)

where cijs is the cost incurred by a carrier of type s in traveling from

destination Di to D ,Xijs is the number of carriers of type s which proceed

from Di to Dj, ws is the capacity of a carrier of type s, Vi is the delivery
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quantity at Di., Yik is the quantity carried from Di to D. destined for D.,

and node 1 is the origin. NT is the number of types of vehicles.

In (5.1) we minimize the total travel cost. Equations (5.2) state that

the number of carriers into and out of node j is the same. The quantity

shipped from node i to node j destined for node k is less than the capacity

of vehicles from node i to node j (equations (5.3)). Equations (5.4) state

that the quantity shipped from node i to node j destined for node k (k # j)

1i is equal to the quantity out of node j destined for node k. In (5.5) we

find that the quantity from node i to node k destined for node k is equal

to the demand at node k. Finally, constraints (5.6) tell that the quantity

sent out from the origin is equal to the total demand.

As a unifying model, we prefer the primarily binary integer programming

formulation (4) which has fewer variables and more types of constraints

than (5). Both furmlations have on the order of NN2 constraints. Model

(4) has structure which is more closely related to the fundamental Traveling

Salesman Problem formulation (especially the Miller-Tucker-Zemlin formulation).

The Multicommodity Vehicle Routing Problem

We now generalize model (4) to the multicommodity case. In other word",

there are now several different types of products which we must route

simultaneously over a network in order to satisfy whatever demands may

exist at the delivery points for the various products. We present the for-

mulation of the Multicomodity Vehicle Routing Problem, an extension to our

generic model, below.
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NN NN NV

minimize z = Z Zt .k- -t j k (6.1)
i=l j=1 k=1 l j

NN NV

subject to E E Zijk > 1, j = 2,..., NN (6.2)

i=l k=l

NN NN

Z2Z. - . =0, k =1, NV (6.3)

= j=l pjk p = 1 NN

NC NN NN

Pk -E {Qic E y i j k  > 0, k =,..., NV (6.4)
C=I i=l j k

NN NN NN NN

T k {t.i j=Z .jk } + E E tij ijk > 0, k = 1,..., NV (6.5)

k = . j=1 ijk =l

NN NV (C)

, " =E s j= 2,..., NN (6.6)
i=l k=l ijk "C'

C = 1,..., NC

I NC
Yijk' i = 1,..., NN (6.7)

ijk > NC C=i ijk

j =1,..., NN

k =1,..., NV
N

S <  k =1... NV (6.8)
ijk

NV
u. - u. + NN E k ijk < NN -. , 2 i # j NN (6.9)

3. ~ k=1

Zijk' iC) [0,i} (6.10)

where NC = # of commodities

{ if demand for commodity C at node i

S iC = 0 otherwise

; ' , . . . . .... ... . ... ... . , _ - , ... 2_: '4'-.>/
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(C) 11 if commodity C is carried on truck k between nodes i and j

ij k 0 otherwise

QiC demand for commodity C at node i.

Some c6mments regarding this formulation are in order. The model (6)

is analogous to the one-product generic model in most respects. Equations

(6.6) reflect that demands for commodities are satisfied. We assume that

one truck load is sufficient to satisfy a commodity requirement at a demand

node, and that

max Qic < min pk"

1<i<NN l<k<NV
I<C<NC

Now suppose in model (6) that NC = 1. Then y() = k equations (6.7)" Yijk = ijk'

become redundant, and we obtain model (4). Further suppose that the truck

capacity constraints and maximum route time constraints are relaxed. We

obtain the system (4.1),(4.2),(4.4),(4.7),(4.9),(4.10) which is a MTSP of

the type where X = 0. In other words, at most NV salesmen are used. Finally

suppose that NV = 1. Then we have precisely the Miller-Tucker-Zemlin formu-

lation of the Traveling Salesman Problem mentioned previously in this paper.

Extensions

We can incorpol.& .iming restrictions into the truck dispatching model,

however, these constraints will be nonlinear in nature. If we define a. as

the arrAval time at node j then delivery deadlines and earliest delivery time

constraints can be represented by the following equations:
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a. (a + t + t i )k ij j =  NN

a1 0

a.< aj < a., J = 2,..., NN.

Newspapers must confront the additional complication that there is zero

supply when the workday begins. As the day progresses, newspapers come

off the press as some vehicles are in the process of making deliveries.

The supply, therefore, is being produced in the same time interval that

the routing must take place, and the newspapers must be delivered.

This complication can be included in our formulation through the

multicommodity framework. That is, if we divide the workday into periods

(as input we are given the amount of production in each period), we

C
consider the production in period C to be commodity C, and define a. as3

the arrival time at node j with commodity C (or edition C). aI is specified

as input, indicating that commodity C is available for distribution at the

end of period C. These are our production constraints.

Concluding Comments on Formulations

Hopefully, the formulations discussed here provide some kind of unified

basis for viewing these vehicle routing problems (1),(2),(4), and (6) as

one sub-class of combinatorial programming problems. These linear-integer

programming problems, though complex, are still too simplistic to account for

all the real-world constraints encountered in practice. We saw how nonlinear

constraints can handle earliest delivery times and delivery deadlines.
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Alternatively, we might include these constraints explicitly by optimizing

over permissible permutations of stops where variables specify the orderinlgs

in the tours. For example, Pierce [29] expresses the TSP as a minimization

problem over possible permutations. Given nodes 1,2,..., n where 1 is the

origin, we seek an ordering of the stops 2,..., n such as to minimize

n+l
Z = E C(ik 1 ,i ) where i =n+l = 1 and 0 = (il,i2,..., +1 ) is.an

k=2

augmented permutation of the integers 2 through . and C(iV,ik) is the cost

on arc (ij,ik). Pierce formulates various extensions to the TSP in a

similar manner. Perhaps the fact that the linear-integer programming formu-

lations are only crude approximations to reality partially explains why

little attention has been oiven to them in the literature. In any case,

we feel they provide a point of departure from which good heuristics can be

applied to obtain good feasible solutions to the real-world problems. In

addition, they give insight into related schedulLng projects such as demand

responsive "Dial-A-Ride" transportation systems [36], and multiple depot

vehicle dispatch problems [15],[33],[37].
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II. HEURISTIC SOLUTION TECHNIQUES

Background

In section II of this report rather than summarizing all the various

papers which have appeared in -the literature on methods of solving vehicle

scheduling problems, we will discuss in depth three heuristics which have

been used on real-world problems. For more of a literature review we re-

cormend Christofides [8].

Exact route enumeration methods exist [11],[291, however, Christofides

claims that the largest vehicle routing problem of any complexity that has

been solved exactly involved only 23 customers. A logical non-optimal

approach involves heuristic algorithms based on the Traveling Salesman Pro-

blem (or m salesmen p,, blem). The strategy would be to solve the TSP or MTSP

first and then make modifications in order to satisfy capacity and other

restrictions. However, the combinatorial simplicity of these problems, such

as model (2), in comparison with the additional more realistic constraints

which must be confronted sooner or later make this approach, we feel, not

as attractive as others. The three vehicle routing heuristic methods which

we will discuss are found in Clarke and Wright [9], Tyagi [35], and Gillett

and Miller [16].

The Clarke-Wright Algorithm

Undoubtedly, the Clarke-Wright "savings" method is the most widely used

and cited truck dispatching heuristic algorithm. Since the publication of

their paper "Scheduling of Vehicles from a Central Depot to a Number of

Delivery Points" in 1964, IBM has developed VSPX, a computer code designed
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to handle complex vehicle routing problems. VSPX is an implementation of

the Clarke-Wriat approach which considers a multitude of constraint options

[22]. Beltrami and Bodin [5] have recently employed a slight modification

to treat the routing of garbage trucks. Christofides and Ellon found from

10 test problems that tours produced from the "savings" method averaged only

3.2 percent longer than the optimal tours [6]. Of course, one must remember

that because the number of alternative routes and combinations of vehicles

are growing exponentially we can obtain optimal tours only for very small

problems. The method we are about to outline is remarkably simple and can

be performed by hand in many cases.

The Clarke-Wright algorithm is an "exchange" algorithm in the sense that

at each step one set of tours is exchanged for a better set of tours. Initially,

we suppose that every two demand points i and j are supplied individually

from two trucks (refer to Figure III below).

0

Figure III. Initial Setup.

Now if instead of two trucks, we used only one, then we would experience a

savings in travel time of (2d li+ 2 ) - (dli + dlj + dij) dli + dlj - dij

(see Figure IV below). We assume symmetric travel times.

Figure IV. Nodes i and j have been linked.
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g For every possible pair of demand points i and j there is a corresponding

savings sij. We order these savings from greatest to least. Starting

from the top of the list we link nodes i and j on a single truck route

where sij represents the current maximum savings and the following conditions

are satisfied:

(1) nodes i and j are not already on the same truck run;

(2) neither i nor j are interior to an existing tour;

(3) truck availability is not exceeded (we Pssume that the number

of trucks with smallest capacity is unlimited);

(4) truck capacity is not exceeded;

(5) maximum tour length is not exceeded.

We now cross s.. off the list and continue until no further link between

nodes can be made that will decrease total travel time, at which point we

have the solution. A modification involves extending one route as far as

constraints will allow and then starting another route. Yellow [38] has

made this version especially appealing by giving a procedure for generating

the largest-savings link out from an end-node of the tour under consideration.

The Tyagi Algorithm

In "A Practical Method for the Truck Dispatching Problem," Tyagi pre-

2 sents a method which he claims makes best possible use of truck capacity,

and is geared towards medium to large size problems [35]. It should be

pointed out that Tyagi's paper (at least its English translation) is miserably

written and the discussion of the algorithm is inconsistent from one section

to the next.

N-/
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SLppose that a large number of trucks are available, each of capacity C.

The case whete different vehicles have different capacities requires almost

no additional comp.tational effort, but we prefer to consider the case where

all capacities are the same, in order to facilitate description of the

algorithm. Also assume that the maximum route length is very large. The

demand points are grouped in the following very straightforward fashion.

Starting with node 2 (node 1 is the central depot) we find its nearest neighbor,

say node k, subject to the restriction that Q2 + Qk < C. We next find the

nearest neighbor to node k, say node j, such that Q2 + Qk + Q < C and Lontinue

until adding a nearest neighbor will result in a tour exceeding truck capacity.

Next we build anoLher tour, until all demand points are served. Rules of

thumb are indicated to minimize the frequency of a group consisting of only

one delivery point, especially, in the case where the delivery is small or the

distance from the central depot to this point is more than half the distance

from the farthest point to the central depot.

Tyagi states that the number, N, of trips desired can be determined first,

n
i.e., N = F E Qi/C -1 where Qi is the demand at node i and fx] is the

i=l
ceiling of x (least integer function: min k). This can only be true under

k>x
the condition that we may require two tours to satisfy a particular demand at

an end-node of a tour. The splitting of a delivery is mentioned nowhere in

his paper. In any case, having grouped the delivery points into m tours, the

truck dispatching problem reduces to m Traveling Salesman Problems.

Although we have outlined the essence of his work, Tyagi develops his

method into a more flexible algorithm. In contrast to the exchange-type

algorithm, this approach is an example of a "buildup" algorithm. Tyagi's
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algorithm (1968) is very similar to the Karg and Thompson [23] heuristic

algorithm for solution of the TSP (1964); it is well-suited foi both hand

and computer solution.

The Gillett-Miller Algorithm

In a recent paper by Gill;ett and Miller [16] an efficient buildup

algorithm for handling up to about 250 nodes was introduced. In the previously

discussed algorithms, input included a travel time (or distance) matrix.

Here we require rectangular coordinates for each demand poin., from which

we may calculate polar coordinates. We select a "seed" node randomly. With

central depot as the pivot we start sweeping (clockwise or counterclockwise)

the ray from the central depot to the seed. Demand nodes are added to a

route as they are swept. If the polar coordinate indicating angle is ordered

(for the demand points from smallest to largest (with seed's angle 0) we

enlarge routes as we increase the angle until capacity restricts us from

enlarging a route by including an additional demand node. Th.s demand point

becomes the seed for the following route. Once we have the routes we can

apply TSP algorithms such as the Lin-Kernighan heuristic to improve tours and

obtain significantly better results. In addition, we can vary the seed and

select the best solution.

Shortcomings of Algorithms

The most apparent aspect of the three algorithms presented is their

simplicity and computational efficiency. Each has its dra:backs, however.

The Clarke-Wright algorithm is initiated with an infeasible solution since

the number of trucks available is generally less than the number of demand
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points. Consequently, there is no guarantee that the final solution will

be feasible. Tyagi's algorithm may require that two deliveries be made to

one point. Also it may be necessary to form a tour consisting of a small

number of deliveries of total quantity much less that C. The Gillett-Miller

algorithm is not valid unless the travel time is euclidean and obeys the

triangle inequality; in many instances this is not the case.

Similarities Between Algorithms

Though these algorithms are obviously dissimilar in certain respects

we can, in some sense, place them in an integrated context. That is, they

differ primarily in the order in which nodes are linked and tours are formed.

Suppose we introduce a utility function u 3.j = f(d li dl,dij) which states

that the utility of joining nodes i and j on a tour is a function of the

travel times dlidlj, and dij. Then each algorithm becomes an implementation

of a unified algorithm which links nodes i and j when feasible where u.. is

the current maximal utility. For each algorithm there is a particular utility

function of the form uij = f(d li,dljdij). In the Clarke-Wright algorithm

we use u.. = d + d lj - di.. Gaskell's H method (not discussed in this

paper) uses uij = dli + dlj - 2dij. A utility function of the form

uij dli +dj - ydij is such that as we increase y(y > 0), greater emphasis

is placed on the distance between points i and j rather than their position

relative to the central depot. We refer to y as the route shape parameter.

The utility function u.. = -d.. is sufficient for Tyagi's algorithm (alter-

natively uij = dli + dlj - M dij where M is relatively large). With respect to

the Gillett-Miller sweep algorithm, suppose P. and P. represent the rectangular2.
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coordinates of nodes i and j where the central depot is the origin. From

vector analysis we know that cos 0 = A • B/ IIAIIIIBII ; in other words the

angle between two vectors A and B is given by the inverse cosine of the

vector product A * B divided by the product of the norms of A and B. Since

we seek the point which makes the smallest angle with the present point, for

-d d
inclusion in a route we can write u.. = -dlidl- where P..P. is a vector

13 P. P. 1 3

product.

Conclusions

Yellow's modification of the Clarke-Wright procedure appears computa-
tionally to be the most powerful vehicle routing program (based on computa-

tional experience mentioned in the literature); problems of 200 nodes have

been solved in less than a minute and a problem with 1000 nodes was solved

in five minutes. However, there is no computational experience offered for

Tyagi's algorithm.

This report has presented the vehicle routing problem, discussed various

integer programming formulations, and studied several heuristic approaches

for solution of the problem. The focus has been on unifying previous work

in order to gain insight into this important sub-class of combinatorial

problems. Hopefully this insight will result in better analysis of complex

logistics and transportation systems, in particular with respect to newspaper

distribution.
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